Copied to
clipboard

G = C337Q16order 432 = 24·33

4th semidirect product of C33 and Q16 acting via Q16/C4=C22

metabelian, supersoluble, monomial

Aliases: C337Q16, C3210Dic12, C12.32S32, (C3×C6).81D12, (C3×C12).122D6, C324C8.2S3, (C32×C6).39D4, C338Q8.2C2, Dic6.1(C3⋊S3), (C3×Dic6).11S3, C31(C327Q16), C32(C323Q16), C326(C3⋊Q16), C6.4(C327D4), C2.7(C337D4), C6.25(C3⋊D12), (C32×Dic6).4C2, (C32×C12).18C22, C4.11(S3×C3⋊S3), C12.33(C2×C3⋊S3), (C3×C6).59(C3⋊D4), (C3×C324C8).2C2, SmallGroup(432,446)

Series: Derived Chief Lower central Upper central

C1C32×C12 — C337Q16
C1C3C32C33C32×C6C32×C12C32×Dic6 — C337Q16
C33C32×C6C32×C12 — C337Q16
C1C2C4

Generators and relations for C337Q16
 G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, ac=ca, dad-1=a-1, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 840 in 156 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C3, C3, C3, C4, C4, C6, C6, C6, C8, Q8, C32, C32, C32, Dic3, C12, C12, C12, Q16, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, Dic6, Dic6, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, Dic12, C3⋊Q16, C32×C6, C3×C3⋊C8, C324C8, C3×Dic6, C324Q8, Q8×C32, C32×Dic3, C335C4, C32×C12, C323Q16, C327Q16, C3×C324C8, C32×Dic6, C338Q8, C337Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, C3⋊S3, D12, C3⋊D4, S32, C2×C3⋊S3, Dic12, C3⋊Q16, C3⋊D12, C327D4, S3×C3⋊S3, C323Q16, C327Q16, C337D4, C337Q16

Smallest permutation representation of C337Q16
On 144 points
Generators in S144
(1 121 79)(2 80 122)(3 123 73)(4 74 124)(5 125 75)(6 76 126)(7 127 77)(8 78 128)(9 95 58)(10 59 96)(11 89 60)(12 61 90)(13 91 62)(14 63 92)(15 93 64)(16 57 94)(17 42 49)(18 50 43)(19 44 51)(20 52 45)(21 46 53)(22 54 47)(23 48 55)(24 56 41)(25 142 37)(26 38 143)(27 144 39)(28 40 137)(29 138 33)(30 34 139)(31 140 35)(32 36 141)(65 101 134)(66 135 102)(67 103 136)(68 129 104)(69 97 130)(70 131 98)(71 99 132)(72 133 100)(81 113 106)(82 107 114)(83 115 108)(84 109 116)(85 117 110)(86 111 118)(87 119 112)(88 105 120)
(1 68 109)(2 110 69)(3 70 111)(4 112 71)(5 72 105)(6 106 65)(7 66 107)(8 108 67)(9 49 28)(10 29 50)(11 51 30)(12 31 52)(13 53 32)(14 25 54)(15 55 26)(16 27 56)(17 40 95)(18 96 33)(19 34 89)(20 90 35)(21 36 91)(22 92 37)(23 38 93)(24 94 39)(41 57 144)(42 137 58)(43 59 138)(44 139 60)(45 61 140)(46 141 62)(47 63 142)(48 143 64)(73 98 86)(74 87 99)(75 100 88)(76 81 101)(77 102 82)(78 83 103)(79 104 84)(80 85 97)(113 134 126)(114 127 135)(115 136 128)(116 121 129)(117 130 122)(118 123 131)(119 132 124)(120 125 133)
(1 104 116)(2 97 117)(3 98 118)(4 99 119)(5 100 120)(6 101 113)(7 102 114)(8 103 115)(9 42 40)(10 43 33)(11 44 34)(12 45 35)(13 46 36)(14 47 37)(15 48 38)(16 41 39)(17 28 58)(18 29 59)(19 30 60)(20 31 61)(21 32 62)(22 25 63)(23 26 64)(24 27 57)(49 137 95)(50 138 96)(51 139 89)(52 140 90)(53 141 91)(54 142 92)(55 143 93)(56 144 94)(65 81 126)(66 82 127)(67 83 128)(68 84 121)(69 85 122)(70 86 123)(71 87 124)(72 88 125)(73 131 111)(74 132 112)(75 133 105)(76 134 106)(77 135 107)(78 136 108)(79 129 109)(80 130 110)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 57 5 61)(2 64 6 60)(3 63 7 59)(4 62 8 58)(9 74 13 78)(10 73 14 77)(11 80 15 76)(12 79 16 75)(17 119 21 115)(18 118 22 114)(19 117 23 113)(20 116 24 120)(25 102 29 98)(26 101 30 97)(27 100 31 104)(28 99 32 103)(33 131 37 135)(34 130 38 134)(35 129 39 133)(36 136 40 132)(41 105 45 109)(42 112 46 108)(43 111 47 107)(44 110 48 106)(49 87 53 83)(50 86 54 82)(51 85 55 81)(52 84 56 88)(65 139 69 143)(66 138 70 142)(67 137 71 141)(68 144 72 140)(89 122 93 126)(90 121 94 125)(91 128 95 124)(92 127 96 123)

G:=sub<Sym(144)| (1,121,79)(2,80,122)(3,123,73)(4,74,124)(5,125,75)(6,76,126)(7,127,77)(8,78,128)(9,95,58)(10,59,96)(11,89,60)(12,61,90)(13,91,62)(14,63,92)(15,93,64)(16,57,94)(17,42,49)(18,50,43)(19,44,51)(20,52,45)(21,46,53)(22,54,47)(23,48,55)(24,56,41)(25,142,37)(26,38,143)(27,144,39)(28,40,137)(29,138,33)(30,34,139)(31,140,35)(32,36,141)(65,101,134)(66,135,102)(67,103,136)(68,129,104)(69,97,130)(70,131,98)(71,99,132)(72,133,100)(81,113,106)(82,107,114)(83,115,108)(84,109,116)(85,117,110)(86,111,118)(87,119,112)(88,105,120), (1,68,109)(2,110,69)(3,70,111)(4,112,71)(5,72,105)(6,106,65)(7,66,107)(8,108,67)(9,49,28)(10,29,50)(11,51,30)(12,31,52)(13,53,32)(14,25,54)(15,55,26)(16,27,56)(17,40,95)(18,96,33)(19,34,89)(20,90,35)(21,36,91)(22,92,37)(23,38,93)(24,94,39)(41,57,144)(42,137,58)(43,59,138)(44,139,60)(45,61,140)(46,141,62)(47,63,142)(48,143,64)(73,98,86)(74,87,99)(75,100,88)(76,81,101)(77,102,82)(78,83,103)(79,104,84)(80,85,97)(113,134,126)(114,127,135)(115,136,128)(116,121,129)(117,130,122)(118,123,131)(119,132,124)(120,125,133), (1,104,116)(2,97,117)(3,98,118)(4,99,119)(5,100,120)(6,101,113)(7,102,114)(8,103,115)(9,42,40)(10,43,33)(11,44,34)(12,45,35)(13,46,36)(14,47,37)(15,48,38)(16,41,39)(17,28,58)(18,29,59)(19,30,60)(20,31,61)(21,32,62)(22,25,63)(23,26,64)(24,27,57)(49,137,95)(50,138,96)(51,139,89)(52,140,90)(53,141,91)(54,142,92)(55,143,93)(56,144,94)(65,81,126)(66,82,127)(67,83,128)(68,84,121)(69,85,122)(70,86,123)(71,87,124)(72,88,125)(73,131,111)(74,132,112)(75,133,105)(76,134,106)(77,135,107)(78,136,108)(79,129,109)(80,130,110), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,57,5,61)(2,64,6,60)(3,63,7,59)(4,62,8,58)(9,74,13,78)(10,73,14,77)(11,80,15,76)(12,79,16,75)(17,119,21,115)(18,118,22,114)(19,117,23,113)(20,116,24,120)(25,102,29,98)(26,101,30,97)(27,100,31,104)(28,99,32,103)(33,131,37,135)(34,130,38,134)(35,129,39,133)(36,136,40,132)(41,105,45,109)(42,112,46,108)(43,111,47,107)(44,110,48,106)(49,87,53,83)(50,86,54,82)(51,85,55,81)(52,84,56,88)(65,139,69,143)(66,138,70,142)(67,137,71,141)(68,144,72,140)(89,122,93,126)(90,121,94,125)(91,128,95,124)(92,127,96,123)>;

G:=Group( (1,121,79)(2,80,122)(3,123,73)(4,74,124)(5,125,75)(6,76,126)(7,127,77)(8,78,128)(9,95,58)(10,59,96)(11,89,60)(12,61,90)(13,91,62)(14,63,92)(15,93,64)(16,57,94)(17,42,49)(18,50,43)(19,44,51)(20,52,45)(21,46,53)(22,54,47)(23,48,55)(24,56,41)(25,142,37)(26,38,143)(27,144,39)(28,40,137)(29,138,33)(30,34,139)(31,140,35)(32,36,141)(65,101,134)(66,135,102)(67,103,136)(68,129,104)(69,97,130)(70,131,98)(71,99,132)(72,133,100)(81,113,106)(82,107,114)(83,115,108)(84,109,116)(85,117,110)(86,111,118)(87,119,112)(88,105,120), (1,68,109)(2,110,69)(3,70,111)(4,112,71)(5,72,105)(6,106,65)(7,66,107)(8,108,67)(9,49,28)(10,29,50)(11,51,30)(12,31,52)(13,53,32)(14,25,54)(15,55,26)(16,27,56)(17,40,95)(18,96,33)(19,34,89)(20,90,35)(21,36,91)(22,92,37)(23,38,93)(24,94,39)(41,57,144)(42,137,58)(43,59,138)(44,139,60)(45,61,140)(46,141,62)(47,63,142)(48,143,64)(73,98,86)(74,87,99)(75,100,88)(76,81,101)(77,102,82)(78,83,103)(79,104,84)(80,85,97)(113,134,126)(114,127,135)(115,136,128)(116,121,129)(117,130,122)(118,123,131)(119,132,124)(120,125,133), (1,104,116)(2,97,117)(3,98,118)(4,99,119)(5,100,120)(6,101,113)(7,102,114)(8,103,115)(9,42,40)(10,43,33)(11,44,34)(12,45,35)(13,46,36)(14,47,37)(15,48,38)(16,41,39)(17,28,58)(18,29,59)(19,30,60)(20,31,61)(21,32,62)(22,25,63)(23,26,64)(24,27,57)(49,137,95)(50,138,96)(51,139,89)(52,140,90)(53,141,91)(54,142,92)(55,143,93)(56,144,94)(65,81,126)(66,82,127)(67,83,128)(68,84,121)(69,85,122)(70,86,123)(71,87,124)(72,88,125)(73,131,111)(74,132,112)(75,133,105)(76,134,106)(77,135,107)(78,136,108)(79,129,109)(80,130,110), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,57,5,61)(2,64,6,60)(3,63,7,59)(4,62,8,58)(9,74,13,78)(10,73,14,77)(11,80,15,76)(12,79,16,75)(17,119,21,115)(18,118,22,114)(19,117,23,113)(20,116,24,120)(25,102,29,98)(26,101,30,97)(27,100,31,104)(28,99,32,103)(33,131,37,135)(34,130,38,134)(35,129,39,133)(36,136,40,132)(41,105,45,109)(42,112,46,108)(43,111,47,107)(44,110,48,106)(49,87,53,83)(50,86,54,82)(51,85,55,81)(52,84,56,88)(65,139,69,143)(66,138,70,142)(67,137,71,141)(68,144,72,140)(89,122,93,126)(90,121,94,125)(91,128,95,124)(92,127,96,123) );

G=PermutationGroup([[(1,121,79),(2,80,122),(3,123,73),(4,74,124),(5,125,75),(6,76,126),(7,127,77),(8,78,128),(9,95,58),(10,59,96),(11,89,60),(12,61,90),(13,91,62),(14,63,92),(15,93,64),(16,57,94),(17,42,49),(18,50,43),(19,44,51),(20,52,45),(21,46,53),(22,54,47),(23,48,55),(24,56,41),(25,142,37),(26,38,143),(27,144,39),(28,40,137),(29,138,33),(30,34,139),(31,140,35),(32,36,141),(65,101,134),(66,135,102),(67,103,136),(68,129,104),(69,97,130),(70,131,98),(71,99,132),(72,133,100),(81,113,106),(82,107,114),(83,115,108),(84,109,116),(85,117,110),(86,111,118),(87,119,112),(88,105,120)], [(1,68,109),(2,110,69),(3,70,111),(4,112,71),(5,72,105),(6,106,65),(7,66,107),(8,108,67),(9,49,28),(10,29,50),(11,51,30),(12,31,52),(13,53,32),(14,25,54),(15,55,26),(16,27,56),(17,40,95),(18,96,33),(19,34,89),(20,90,35),(21,36,91),(22,92,37),(23,38,93),(24,94,39),(41,57,144),(42,137,58),(43,59,138),(44,139,60),(45,61,140),(46,141,62),(47,63,142),(48,143,64),(73,98,86),(74,87,99),(75,100,88),(76,81,101),(77,102,82),(78,83,103),(79,104,84),(80,85,97),(113,134,126),(114,127,135),(115,136,128),(116,121,129),(117,130,122),(118,123,131),(119,132,124),(120,125,133)], [(1,104,116),(2,97,117),(3,98,118),(4,99,119),(5,100,120),(6,101,113),(7,102,114),(8,103,115),(9,42,40),(10,43,33),(11,44,34),(12,45,35),(13,46,36),(14,47,37),(15,48,38),(16,41,39),(17,28,58),(18,29,59),(19,30,60),(20,31,61),(21,32,62),(22,25,63),(23,26,64),(24,27,57),(49,137,95),(50,138,96),(51,139,89),(52,140,90),(53,141,91),(54,142,92),(55,143,93),(56,144,94),(65,81,126),(66,82,127),(67,83,128),(68,84,121),(69,85,122),(70,86,123),(71,87,124),(72,88,125),(73,131,111),(74,132,112),(75,133,105),(76,134,106),(77,135,107),(78,136,108),(79,129,109),(80,130,110)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,57,5,61),(2,64,6,60),(3,63,7,59),(4,62,8,58),(9,74,13,78),(10,73,14,77),(11,80,15,76),(12,79,16,75),(17,119,21,115),(18,118,22,114),(19,117,23,113),(20,116,24,120),(25,102,29,98),(26,101,30,97),(27,100,31,104),(28,99,32,103),(33,131,37,135),(34,130,38,134),(35,129,39,133),(36,136,40,132),(41,105,45,109),(42,112,46,108),(43,111,47,107),(44,110,48,106),(49,87,53,83),(50,86,54,82),(51,85,55,81),(52,84,56,88),(65,139,69,143),(66,138,70,142),(67,137,71,141),(68,144,72,140),(89,122,93,126),(90,121,94,125),(91,128,95,124),(92,127,96,123)]])

51 conjugacy classes

class 1  2 3A···3E3F3G3H3I4A4B4C6A···6E6F6G6H6I8A8B12A12B12C···12N12O···12V24A24B24C24D
order123···333334446···6666688121212···1212···1224242424
size112···244442121082···244441818224···412···1218181818

51 irreducible representations

dim1111222222224444
type++++++++-+-+-+-
imageC1C2C2C2S3S3D4D6Q16D12C3⋊D4Dic12S32C3⋊Q16C3⋊D12C323Q16
kernelC337Q16C3×C324C8C32×Dic6C338Q8C324C8C3×Dic6C32×C6C3×C12C33C3×C6C3×C6C32C12C32C6C3
# reps1111141522844448

Matrix representation of C337Q16 in GL8(𝔽73)

01000000
7272000000
00100000
00010000
000007200
000017200
00000010
00000001
,
01000000
7272000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000100
0000007272
00000010
,
6110000000
2212000000
0016570000
0016160000
000007200
000072000
00000010
00000001
,
3060000000
1343000000
0043110000
0011300000
000072000
000007200
00000010
0000007272

G:=sub<GL(8,GF(73))| [0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[61,22,0,0,0,0,0,0,10,12,0,0,0,0,0,0,0,0,16,16,0,0,0,0,0,0,57,16,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[30,13,0,0,0,0,0,0,60,43,0,0,0,0,0,0,0,0,43,11,0,0,0,0,0,0,11,30,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72] >;

C337Q16 in GAP, Magma, Sage, TeX

C_3^3\rtimes_7Q_{16}
% in TeX

G:=Group("C3^3:7Q16");
// GroupNames label

G:=SmallGroup(432,446);
// by ID

G=gap.SmallGroup(432,446);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,92,254,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽